Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening

نویسندگان

  • Weiwei Chen
  • Junhua Kong
  • Tongfei Lai
  • Kenneth Manning
  • Chaoqun Wu
  • Ying Wang
  • Cheng Qin
  • Bin Li
  • Zhiming Yu
  • Xian Zhang
  • Meiling He
  • Pengcheng Zhang
  • Mei Gu
  • Xin Yang
  • Atef Mahammed
  • Chunyang Li
  • Toba Osman
  • Nongnong Shi
  • Huizhong Wang
  • Stephen Jackson
  • Yule Liu
  • Philippe Gallusci
  • Yiguo Hong
چکیده

In plants, microRNAs (miRNAs) play essential roles in growth, development, yield, stress response and interactions with pathogens. However no miRNA has been experimentally documented to be functionally involved in fruit ripening although many miRNAs have been profiled in fruits. Here we show that SlymiR157 and SlymiR156 differentially modulate ripening and softening in tomato (Solanum lycopersicum). SlymiR157 is expressed and developmentally regulated in normal tomato fruits and in those of the Colourless non-ripening (Cnr) epimutant. It regulates expression of the key ripening gene LeSPL-CNR in a likely dose-dependent manner through miRNA-induced mRNA degradation and translation repression. Viral delivery of either pre-SlymiR157 or mature SlymiR157 results in delayed ripening. Furthermore, qRT-PCR profiling of key ripening regulatory genes indicates that the SlymiR157-target LeSPL-CNR may affect expression of LeMADS-RIN, LeHB1, SlAP2a and SlTAGL1. However SlymiR156 does not affect the onset of ripening, but it impacts fruit softening after the red ripe stage. Our findings reveal that working together with a ripening network of transcription factors, SlymiR157 and SlymiR156 form a critical additional layer of regulatory control over the fruit ripening process in tomato.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation Colourless non-ripening

Naturally-occurring epimutants are rare and have mainly been described in plants. However how these mutants maintain their epigenetic marks and how they are inherited remain unknown. Here we report that CHROMOMETHYLASE3 (SlCMT3) and other methyltransferases are required for maintenance of a spontaneous epimutation and its cognate Colourless non-ripening (Cnr) phenotype in tomato. We screened a ...

متن کامل

Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening

Plant virus technology, in particular virus-induced gene silencing, is a widely used reverse- and forward-genetics tool in plant functional genomics. However the potential of virus technology to express genes to induce phenotypes or to complement mutants in order to understand the function of plant genes is not well documented. Here we exploit Potato virus X as a tool for virus-induced gene com...

متن کامل

Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening.

Fruit ripening in tomato (Solanum lycopersicum) requires the coordination of both developmental cues as well as the plant hormone ethylene. Although the role of ethylene in mediating climacteric ripening has been established, knowledge regarding the developmental regulators that modulate the involvement of ethylene in tomato fruit ripening is still lacking. Here, we show that the tomato APETALA...

متن کامل

Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant

In this paper we describe a novel, dominant pleiotropic tomato (Lycopersicon esculentum)-ripening mutation, Cnr (colorless nonripening). This mutant occurred spontaneously in a commercial population. Cnr has a phenotype that is quite distinct from that of the other pleiotropic tomato-ripening mutants and is characterized by fruit that show greatly reduced ethylene production, an inhibition of s...

متن کامل

Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis

MicroRNAs (miRNAs) play important roles in plant development through regulation of gene expression by mRNA degradation or translational inhibition. Despite the fact that tomato (Solanum lycopersicum) is the model system for studying fleshy fruit development and ripening, only a few experimentally proven miRNA targets are known, and the role of miRNA action in these processes remains largely unk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015